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Universal density-force relations for polymers near a repulsive wall
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The relation between the force exerted by long flexible polymer chains on a repulsive wall and the corre-
sponding monomer density close to the wall is shown to imply a universal amplitude ratio. This is calculated
in an & expansion, and its importance in various situations is pointed out. These include a single polymer
trapped between two parallel walls and a solution of polymers inducing a depletion interaction between the
wall and a mesoscopic particle. Dilute and semidilute solutions in the half space are also considered.
[S1063-651%97)07003-1

PACS numbses): 61.25.Hg, 05.70.Jk, 68.35.Rh, 82.70.Dd

I. INTRODUCTION monodisperse solution dfee chains in a half space i) in
a half space containing a mesoscopic obst&gbarticle™)
In a dilute or semidilute solution of long flexible polymer of arbitrary shape and finite extent. (iii) and(iv) the poly-
chains in the half space bounded by a planar repulsive wallner density far from the walland from the particlgis fixed,
the monomer densitprofile has a depletion region of meso- and the difference between the forces with and without the
scopic width[1]. For distanceg from the wall that are small Particle yields the depletion interaction of the particle with
compared to this widtiibut large on the microscopic scale the vyall. A semidilute solution in half spad@i’ ) is briefly
the profile increases asz!”, wherew is the Flory exponent considered at the end. _
[1]. This has been predicted by Joanny, Leibler, and de . In all cases it is as;umed that Iengths', such as the chain
Gennes[2], who also observed that the amplitude in thesaeRX (or the screening lengthand the distance from the

power law is proportional to the repulsiferce per unit area wall to a f'x?d. end of the ch_aln or to the closesft point of
which the polymer solution exerts on the wall, another confining boundafyhich we denote collectively by

We recall their argument by discussing the case ofadilute?)’ are much larger than the “microscopic” lengtie
. . . . _(monomer size or the ran f the monomer nit&l
polymer solution where the width of the depletion region i onomer size or the ranges of the monomer potenfils

S . X
B . due to a wall or particle It is for a<z<D that the monomer
of the order of the chain size in bulR,~N", with N the P be

. . o density varies~z' and forms a universal relation with the
number of monomers per chaifA precise definition ofR,

- - . - mean repulsive forcé exerted by the polymés) on the wall
will be given below) Denoting the bulk densities of poly- i, \which the numbeB appears.
mers and monomers by, andNn;, respectively, the mono-  Tpe density-force relations are stated in Sec. I, illustrated
mer density profile is given by1(z/R,)Nn,, whereM isa  in Secs. Il and IV and derive¢by means of the polymer-
scaling function that tends to unity for large argument. Themagnet analogyin Sec. V. Section VI is reserved for con-
above mentioned behaviorz* then follows, since the cluding remarks.
monomer density profile should be independent Nofif
z<R,. The reason is that the monomer density close to the Il. DENSITY-FORCE RELATIONS
wall is proportional1-3] to the force per area that the poly- ) » ) i
mers exert on the wall, and the force per area equals the Consider a modified monomer density defined by
osmotic pressuraykgT of the dilute solution which is inde-
pendent ofN. For a semidilute solutiohwhere the depletion p(r) dr=k dM), @)
width is of the order of the screening lenggh-(Nny) ~#7,
with w=1/(dv—1) andd the space dimension, and where
the osmotic pressure is (Nny)#*1] the argument is quite
similar[1,2]. While these arguments yield the power-law ex-
ponent 1/ of the profile they make no definite prediction k=(R,)YIN (2a)
about the amplitude in the density-force relationship.

In this paper acompletequantitative expression for the that relates the total numbbrof monomers in a single chain
density-force relationship is given, which is free of micro- to the mean square
scopic detail3] and characterized by aniversal number
B. It is shown that thesamenumber appears in a wide vari- R2=(R%) pur=(R?/d)pui (2b)
ety of differentsituations.

The following situations will be considered) A single  of the projectionR, of the end to end distand® onto the
chain with one endor both endsfixedfluctuating in the half  x axis when the chain fluctuates in unbounded space. Here
space bounded by a wa(li) A single chairtrappedbetween d is the space dimension. Since only the rati®’N enters
two parallel walls. The distant wall may be either repulsivep, it is less dependent on the monomer structure than the
or near the threshold for adsorptioh,4]. (i) A dilute and usual densitydAN/dr. The scaling dimension ofp is

whered\(r) is the number of monomef$)] located inside
the volume elemerdr around the point. The quantityk is
the nonuniversal amplitude
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(length ")~ and equals the ordinarfpr “naive”) dimen-  eter profile(4(r))* and the force onto the wall satisfg1]
sion of p, comparg 5] and Sec. V below. Similarly one may  a relation similar to E8). However, unlike the integrand in
define layer densities, (z) by Eq. (8), the expressior[((r)) & I(¢(r)s1-1, which
_ now appears on the left-hand siflks) is notz independent

pi(2) dz=k d\V\(2), ®) and negative, but proportional &' and positive(if we as-
sume that the wall and particle surfaces have the same char-
acte). Since the right-hand sideghs) now has[11(b)] the
form —Cz46f/kgT with C a positive universal constant, the
interaction is again attractive.

whered\,(z) is the number of monomers with a distance
from the wall betweerz andz+dz. Thusp,(z)=Jdr| p(r)
where the integration is over thd—1 components of
r=(ry,2z) parallel to the wall.

In the single-chain situation§) and (ii), the universal
relation read$6] Ill. FIXED AND TRAPPED CHAINS

(a9 51y _ As a consequence of the simple universal relationsidips
{pr(2))2 Bi/keT. “ and (8), the asymptotic density and the force must have the
Here the superscript (as) refers to the “asymptotic” condi-Samedependence on the variabl@mentioned above. We

tion a<z<D, andB is the universal amplitude mentioned in NOW discuss the various cases, beginning with situaibn

the Introduction. For idealrandom walk chains[7] where an ideal chain has one end fixed at a distagdeom
the wall. Then fora<z<z,,R, (a9 one finds a scaled den-
B=B,=2 (5  sity (pr(2))*)z* given by 2, Inerf [za/(\2R,)], which

is twice the repulsive forcé/kgT, compare, e.gl4]. Thus
Egs. (4) and (5) are obeyed, and the density and the force
both change from a power-laWlZ2] behavior~z,§1 for

independent ofd, while for chains with excluded volume
(EV) interaction

B=Bgy=2{1—b;&}, (6a) Za<Ryx to an exponential dependence R, ‘ex—2Z/
(2R2)] for Ry<z,. Equationg4) and(5) can also be easily
with checked for an ideal chain with two fixed ends at distances
B B z, and zg and with a<€z<z,,z5,R,. In this casef/kgT
by =(In 2+ Ce—2/3)/8=0.075 (6D equals R, *(¢a+ La)/[eXP(Zale) 1], With La=2a/Ry,

{8=27g/Ry.

Consider now situatiotii) of a chain trapped in the slit
between two parallel planar walls with separat@nlIf both
wallls are repulsive, one finds the scaling Igds8]

andd=4-—¢ is close to 4. HereC=0.577 is Euler's con-
stant.

In situation (iii) the density-force relation also has the
form (4). Dividing both sides by the area of the wall, one
finds that(p(r))gﬁ‘s)/zl’V equalsBn,, with n, the polymer (pr(2))=(RY¥"ID)X(2/ Ry ,DIR,), (9)
density in the bulkfar from the wal). Here the pressure on
the wall f/A equals the pressure in the bulk, which is with z the distance from one of the walls, and
nkgT from the ideal gas law. On denoting the bulk normal-
ized[5] monomer densityp) i /(nyRY") in the scaling re-
gion a<z,R, by M(z/'R,), the universal relation can also
be written as

flkgT=D 1Y(D/R,), (10

whereX andY are universal functions. Thus the res(#)
confirms the plausible assumption14] that for

(as Uy Uy a<z<R,,D, i.e., close to the repulsive wall,p,) and
M (2 RIZ BIR" @ f/kgT have the same dependence®pandD, and one can
Immersing the finite particle of situatiofiv) in the polymer dentify
sé?lutlon in the half space changes the force on the wall by B=limx~ Y X(x,y)/Y(y). (11)
, Where X0

a a _ We give explicit forms forD/R, large and small. In the
f dry {[{p(r) /() (1= 1k = 8 (npks ). (8) wide-slit limit D— o with the other variables kept fixed,
Equation(8) is expected to hold for densitiép(r)) down to (pr(2))— (R¥'IDYM(ZIRy) 9)
distances microscopically close to the wail~a). For a
particle which repels the chains, the density deviation an@nd
thus 6f are negative, i.e., the repulsive force onto the wall is
reduced[8], reflecting the attractive character of the deple-

tion i(r;g)er?/ction. Note that multiplying Eq.(8) by  since this limit corresponds to the half space probigin
(p(r))giy/z™"=Bny yields a form which closely resembles with a polymer densityr,=1/(DA) in bulk, compare with
Eq. (4). the discussion leading to E¢7). ThusX—.M, Y—1, and

It is instructive to comparéiv) with the case where the Eq. (11) reduces to Eq(7) for D/R,>1. In the narrow-slit
force between wall and particle is not mediated by a polymefimit D/R,<1

solution but by a critical fluid, such as a binary mixture at its
critical demixing poinf9,10]. In this case, the order param- Y(DIR,)~(DIR,) ™Y, (10"

flkgT—D 1, (10)
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i.e., f/kgT~N [15,16], since the most importari® depen-  the wall and the plate is independentrpf and one can make
dence of the chain partition function comes from an expocontact with situatior(ii). The ratioU(D/R,) of the mean
nential factor exp-const(R,/D)"]. . density between wall and plafgdz(p),, /D to the density

If the' wall atz=D in the parallel-wall geometry is at the n,R" in the bulk equal$23] the ratio of the partition func-
adsorption thresholf#] rather than repulsive, Eq€9)—(11)  {jon ‘of a chain between wall and plate averaged over the
again apply. Except for the half space limits'{X10),  gistancez, of its fixed end from the wall to the partition
where the nature of the distant wall does not enter, the scajynction of a chain with fixed end in the bulk. The first ratio
ing functionsX qndY are different from before, alth_o_ugh the implies[5] a mean numben,UD of polymer chains per unit
ratio (11) remains the same. This may be explicitly con- 5rea petween wall and plate, and the second ratio implies
firmed for an ideal chain in a narrow si?<R,, where  y_ qinyU)/diny with the scaling functiony in Eg. (10) for
the results X— 2{sir’(zn/D) sirf(z/(2D)]} and Y—(Rx/  the forcef=f; of a trapped chain. A straightforward cal-

22 ; : X
D)*mT1,1/4 in the two cases [repulsive-repulsive, cyation[19,24,29 of the force exerted on the immersed
repulsive-thresholdreadily follow from ground-state domi- Plate leads to the result

nance[1,17]. In the second case the chain favors the distan

wall (the density maximum is a=D), and bothp{® and Sf

f/kgT are smaller by a factor of 1/4 than in the first case K TA:_nb<
(with the density maximum in the cente+ D/2 of the sli). B
If the distant wall is not precisely at the adsorption thresholdexpected intuitively. For ideal chains and both walls repul-
but close to it(e.g., on the repulsive sigethe variable de- sive,

scribing the deviation must be included in the scaling de-

fi)
1_UDkB_T

: (13

scription [4]. Also in this crossover scaling case, whéte U:21(8/(771')Z)ex;;[—(wj)ZR)z(/QD?)],

andY in Egs.(9) and (10) depend on an additional scaling

variable, the expression corresponding to the rhs of(Ef.  with j=1,3,5... . Oninserting Eq.(10) into Eq.(13), one
leads to the same numb& given by Eqgs.(5) or (6) as  recovers the result of Asakura and Oos&\&8] for — of,

before. which decreases monotonically fronnkaTA to zero as

Another interesting situation arises if one end of the chairD/R, increases from zero to infinity. To confirm E(B),
in the slit is fixed to the wall az=D. Here Egs.(4) and  note that on its Ihs is confined to the interior of the slit, and
E)9)f—(11)hagamlapp][y- WhileB Isdglven t:jyﬁEqS(S)for (6)has one may replacép)(ny by n,UD(p,){&”. Then Eq.(8) fol-

efore the scaling function$ andY are different from those : _ Uy ;
in the previous c%ses where no end was fixed. For exampl jows from EQ(l?})aSn usmg@)ﬁﬁ?— B,z and the refation
fa) betweer p, )iy’ andf g .

for_ given z a!‘d RX density anql force decrease fDr._’oo As a final example consider a spherical particle with ra-
(wide-slit limit) with exponential laws and not with the . - . .
: .~ diusR muchlarger than the distance; of its closest point to
power laws (9) and (10). However, the leading behavior .
: . S the wall and much larger thaR,. It is then reasonable to
of layer density and force in the narrow-slit limit is expected A RO . ;
. - ; apply the Deriagin approximatiof26,27), which describes
to remain unchanged on fixing one end of the chain. s ) .
the sphere by a superposition of immersed plates with local
distanceD—>D(rH)=zs+rﬁ/(2R) from the wall. In particu-
lar 6f/kgT is then given by the integrdldr over the rhs of
In situation(iii) the amplitudeB defined by Eq(7) was  Eg. (13) with D replaced byD. Note that the second term in
previously introduced in Ref4], but its more general inter- the parentheses in Edq13), which equalsUY, then ap-
pretation as the density-force amplitude for a wide class oproaches 1 as|—=, and the integral converges. Since
situations was not mentioned. Theexpansion result in4] (p(ry, z))Eﬁf)) also follows from the plate expression given
§uff¢rs from a bookkeeping errft8], and the correct result ;phove on replacing—D(r}), Eq. (8) again applies. An
is given by Eq.(6). explicit formula for 5f/kgT can be obtained for ideal chains

In situation(iv) the two sides of the density-force relation 5,q4=3. We note the corresponding free energy of interac-
[Eq. (8)] depend, apart froriR, , on the shape of the particle i, perkgT

and its distance from the wall. To illustrate, we quote the
result for the forcd 19,20

IV. FREE CHAINS AND DEPLETION INTERACTION

T NyRR2V(z/Ry) (143
S5f1(npkgT) = — A(R/R)V"RI9, M(2z5/R,) (12 B

between sphere and wall, from whichf follows as
for a spherical particle with radiug muchsmallerthan its  sf= — (d/dz) sF. Here
distancezg from the wall and much smaller thaR, . Here
M is the density in the half space introduced above (Ej. dr _ _,
The Ihs of Eq.(8) can in the case considered here be calcu- WD:“”I i T In[1+exp(—¢v27)], (14b)
lated[21], and the result again equals the rhs of E).

As an example of ¢éarge particle, consider an object with  where the integration path in the complexlane encircles
the shape of a plat?2] that is oriented parallel to the wall the cut that extends from= — to 7=0 counterclockwise.
and with area and linear dimensionX)¥@~1 thatis much ~ While V is proportional tof ~3exp(—{4/2) for {—, its ex-
larger thanR, and the distanc® between wall and plate. pansion aboug=0 isV=47-r(In2—\/m§+ 12, apart from
Then one may disregard edge effeqis(r,z)).,, between terms of order®. This should be compared with the result
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[25] (5F/kBT)phs=—anTr(Zﬁ—Zs)Z@(Zﬁ—ZS), with ® that can be used_. ThL(s,z))\) obeys Eq.(4) where f/kgT is
the step function, for a model where each polymer chairfiven by the derivative &, +d,.)InL(¢a g)w Of the loga-
interacts with the wall and with the large spherical particlerithm of the polymer partition function. This is in accordance

like a hard spher¢phg with an effective radiusk [28]. with Ref. [6]. In the case of a chain with only one end
(ra) fixed{p(r)) follows from the expression in E417) on
V. POLYMER-MAGNET ANALOGY integrating in the numerator and denominatgr over the
AND SHORT-DISTANCE EXPANSION half space and the validity of E(q4) (Wlth f/kBT given [6]

by f?zA|nf+de£<<PA,B>w) follows from the same line of ar-

gumentd40]. Here one uses that the integration over the half
space [,drg of the quantity in Eg. (209 leads to
z?ZAf+drB<(pA’B>. Thed, term in Eq.(20a does not contrib-

nets” are well understoof30,31. The partition function of 1o the int b f the Dirichlet bound di
a single polymer chain, with the ends fixedratandrg, is l:oen gtz e_'g egral because ot the Lirichiet boundary condi-
B_ .

related to the correlation function of the order parameter dent! Consider next the situatiofiil) of a dilute polymer solu
iti 2]i L | f )
sities ¢,(r4) and ¢a(rs) [32]in & GL model by means ofa 5t ") oy spacé4]. Then(p(r))/n, follows from the

Laplace transformatiod with respect tor —T.. The conju- . :
gate Laplace variable has the dimension of length squared rhs Of Eq.(17) on replacing the denomlnatgr b.y the bulk
quantity {py= LS drg{ea g)puk @and on replacing in the nu-

and is proportional to the total numbidrof monomers of the merator( -y, by the double integraf , dr . drg(-}y. I
. . . . lw + AJ + B\ /w-
chain. The monomer densip(r) is related to the quantity the bulk limit z— the double integral tends to

\p(r):R>1</V(2L)—1¢2(r), (15 Jdrafdrg(-)puk and one verifieg5] the bulk vaIueRi"’ of
(p)/ny, on using translational invariance and the counterpart
which has identical naive and scaling dimensiglegthh  of Eq. (18) in the bulk. The validity of the relatio7) fol-
(I"=d To avoid lengthy formulas we introduce the compactlows on using translational invariance parallel to the wall in
notation order to write the double integral ggdz,f ,drgfdr(-),
and on applying40] Egs.(19) and(20a. Here one takes into
PaB= P1(Ta) ¢1(re) 18 4ccount that the integratiofi;dz,f . drg and the Laplace

for the product of two order parameter densities atand ~ transformationZ of the quantity in Eq(208 yields Cpyy-
The density-force relations in situatiofis) and (iv) can

Now we derive the density-force relatioid)—(8). It is
convenient to use the polymer-magnet analddy4,29,
since wall effects for critical Ginzburg-LanddGL) “mag-

rg-
° Consider first situatiorti) of a chain with two fixed ends, € Shown in essentially the same way. The reason is that Eqs.
in which casg4,19,29 (18) and(19) apply not qnly for the average ),, in Eq. (17)
but also for corresponding averages, or (- )pw for a GL
(p(r))y=LY(r)- eap)w!L{PaB)w- (17)  field in the space between two walls/w) or between a

mesoscopic particle and a wafiw). Heref , in Eq.(18) has
Here<>w denotes a statistical average for a GL field in theto be rep|aced by the Corresponding space |ntm[ For
half space with the Dirichlet conditio®=0 at the boundary examp]e, consider situatia(ii). In this Canp(r)) follows
wall [31]. The dot following¥ denotes a cumulant average. from the rhs of Eq(17) on replacing the two averageﬁv by
The property33] averageg ), and on integrating in the numerator and de-

nominatorz, andzg perpendicular to and, parallel to the

J dr LOV(D)- onadu=RYLong)y (18  Wwalls. Now itis the shift identity41]
. , ,

ensures the normalizatiofb] of {p(r)). Here the integral J dr (T, (1,00 @a Bhww= (2, + 9z, + Ip)(Pa B)ww
[+ extends over the half space bounded by the wall. To find (20b)
the behavioK p)(® of (p) near the repulsive wall, one can
use the short-distance expansiondef near a Dirichlet wall  that can be used. Note that the insertion of the integrated
[4,34-36, which implies[37,3§ stress tensor increases not only the distazgesg between
y the wall atz=0 and the points,rg, but also the distance
W(r),2)~B2" T, (.0 19 b petween the two walls. Integration f§dzafDdzg

in the scaling regiora<z, whereB is the universal ampli- ©f theD qL[J)anuty in Eq. (20 leads to

tude in Egs. (5) or (6). The surface operator (4/dD)fgdzafodZs(@as)ww, Where the Dirichlet condi-

TLL:[(I)L(r\\)]Z/Z with @, = (9,®),_, is the component of tion at z=0 has been taken into account. Combining this

the stress tensor perpendicular to the wall. In both E4js. With Eq. (19) [40] and with the form of(p(r)) described

and(8) the integralf drj T, , (r|,0) of T, , over the surface of a_bove, one obtains th4)D for sguanon(n), wheref/kgT is

the wall appears, which implies a shift of the wgt]35,39.  given[6] by (d/dD)InLf;dza[dZg/dr a|{®ag)ww- EQua-

In the present situatiofi) of a chain with two fixed ends, tion (8) can be derived along similar lin¢42].

(py) follows from Eq.(17) on integrating over| and itisthe ~ The universal amplitud® is also expected to appear in

shift identity [4,39] situations with overlapping chains. For example, consider
situation(iii’ ), where the half space bounded by the repulsive
wall contains asemidilutepolymer solution[1,2,43. In the

f dr <Tii(rH'0)"PA~B>W:(&ZA+‘923)<‘PA'B>W (203 “equilibrium ensemble description” of des Cloizea(i29],
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(p(r)) is given [44] by (¥(r)){) where () is a half VI. CONCLUDING REMARKS
space average with the GL temperature adjubtgdw T so The main results of this note are the density-force rela-

that the GL bulk free energy density, apart. from the signgions (4) and (8) and the value$5) and (6) of the universal
equals the bulk pressure of the polymer solution. Here we argnyjitude B. In addition to the derivation from the field

interested in the behavior gp(r))* for a<z<¢, with ¢ theory(in Sec. ), the relations have been verified explicitly
the screening lengtfL], which corresponds to the correlation i, several case§in Secs. Ill and IV. In the case of self-
Igngth for®d quctu'atlons in the GL modgl. Since the s'hort— avoiding chains, values & beyond thes expansion, i.e., for
distance expansion (19 again applies, and _since §—3 and 2, would be desirable.
(T, (r,0),”) equals the GL bulk free energy density apart | order to observe the density-force relations in simula-
from its sign[45], one finds thaKp(r»E;S,))/Zl/V equalsB  tions or real experiments, one should distinguish between
times the bulk pressure pégT of the semidilute solution. two aspects of the relationga) In a given situation two
This relation is the same as in the dilute césg. differentobservables, i.e., the force and the monomer density
On dropping the restrictioa<z and allowing for micro-  at a “small” distancez from the wall, have theamedepen-
scopically smallz, one expects a relation of the ty[)£9), dences on mesoscopic lengtdenoted byD in the Introduc-
with Bz replaced by a-dependent quantity of less univer- tion), such as the Flory radiug,, the distance of the two
sal character. While this quantity still has the “local” prop- Walls in between which a chain is trapped, the distance from
erty of being independent of the lengt#s[37] and of the the wall of an immersed particle, etc. To observe this, one
particular situation(i)—(iv), it does depend upon details of may even drop the requiremea z (but maintain the single
the wall-monomer and monomer-monomer interaction. Everinequalityz<D), provided one replacesz*” in Eq. (4) by a
for the Dirichlet boundary conditions of the “repulsive wall nonuniversal proportionality factor which depends Dbut
fixed point” [4,31] this quantity depends upon the actual not onD [48], compare the discussion at the end of Sec. V.
strength of the excluded-volume interactiph34,34. It is  This factor drops out on taking ratios for different values of
instructive to verify the local property in the case of a repul-D, and it does not appear in the ratio on the Ihs of @By.(b)
sive wall W characterized by an extrapolation lengtit for  If the double inequalita<z<D is obeyed, the proportion-
® which is not zero but of the order of a microscopic length.ality factor in Eq.(4) has the formBz"*, with the universal
In situation(i) with two ends fixed the corresponding corre- amplitude B. In a first attempt it would be easier to test

lation function has &~ *-correction of the form aspect(a) implementing only the single inequali<D.
The Deriagin-type approximation for the ideal chain me-
(W(r)- pag)w=[1+C H(a,+ 97, T 2 ) KW (1) pap)w - diated depletion interaction between a large spherical particle

and the wall as given in Eq$l4) is presumably exact, as is
argued in the Appendix.

) o The amplitudesB in Egs. (5) and (6) are expected to
compare with the ¥/ expansion in Ref39]. On the rhs of 455647 also in density-force relations for the monomer den-
Eq.(21) an average for a Dirichlet walt appears, for which  gjiy close to acurvedrepulsive wall. For example, consider a
one can apply_ the_ short-distance expansion mentioned abov§ng|e polymer chain that is fixed with one end at a point
The two contributions frond,, andd,, on the rhs of EQ(21) and exerts a repulsive fordeon a spherical particle of
can be neglected since they lead to corrections that anediusR and with center at the origirR<r,). If the chain is
smaller than the leading contribution bycZ) ™! and ideal one may use the known form of the order parameter
(czg) L. However,cz can now be of order 1. The nonuni- correlation function in a Gaussian-Ginzburg-Landau model
versal but local quantity replacin@z'”, in this case is for the outer space of a sphere with Dirichlet boundary con-

(LR "R [1+cflaz]Efp°§),¢2 in the notation[38] of Ref.  ditions (see, e.g., Reff19]) to explicitly show the relation
Z;

(21

[4], whereEf;Z),‘Pz depends orz and the strength of the ex-
2,

cluded volume interaction. In this context it is also useful to
discuss the monomer density rightzat 0 for a representa-
tive w’ of the repulsive wall, corresponding to a potential for
the monomers which vanishes far-0 and has a large but with 1/v=2 and with thesameamplitudeB=2 as for a
finite value forz<0. Generalizing the simple wall-shift ar- planar wall [see Eg. (5)]. Here (a9 denotes
gument of Ref[46] to GL averages which arise in situation a<r—R<r,,R,R,. The quantity in square brackets is then
(i), one obtains t fdr ((I)Z(rH ,0)-eap)wr  independent of — R but depends on the angtein between
=(d5,+ &ZB)(%‘B)W", wheret, characterizes the potential r andr, and is integrated over the surface of the sphere with
height[47]. Comparison with Eqs(15)—(20) shows that, in  the projection co# of the inward pointing surface normal
this case, Eq.(4) applies, with BZ*” replaced by the onto the direction of the forcd/kgT is the derivative of the
L-independent  nonuniversal  and local quamitylogarithm of the polymer partition function with respect to
RY¥/(2Lt,). Thus one obtains universal relations for Fa- Note that Eq(22) applies for arbitrary ratios of the three
z<D, even without requiringa<z, by considering ratios Mesoscopic lengths, ,R, R, and reduces to Ed4) in the
such as the Ihs of Eq8) or by taking ratios of the Ihs of Eq Planar wall limitR— o with R, andr,—R fixed. For illus-

(4) for differentD values, since the nonuniversal local quan-tration ~ we  quote [50,19 the  explicit ~ form

tity then drops out. Of course, neither ta¥” dependence f/ksT=d; {1~ (Riraerfd (ra—R)/(\2R,)1} for d=3 of

nor the universal amplitudB can be observed in this case. the second factor on the rhs (#2). The density-force rela-

f dS[{p(r))®/(r—R)¥]cosd=Bf/kgT, (22
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tion (22) also applies for a chain with excluded volume in- spheres have nearly equal size with a relative difference
teraction[51] if one uses foB and v, respectively, the cor- (2z5/R)Y2 of the radii. To be definite we choose the absolute
responding planar-wall amplitudgsee Eq.(6)] and the difference of the radii equal to the distanzeof the particle
corresponding Flory exponent. from the planar wall. For ideal chains the corresponding GL
Hamiltonian for the concentric system has a position-
dependen{52] coefficientt=b?t in front of the ®? term.
Heret~T—T, is the position-independent coefficient in the
It is a pleasure to thank T.W. Burkhardt for discussionsoriginal Hamiltonian, ando=b(r)=|dr/ar[*® is the local
and for a critical reading of the manuscript. scale factor of the transformatiofwhich diverges at that
point of w corresponding ta =«). However, in the region
K of the concentric geometry correspondingkipthe quan-
tities b andt are slowly varying on the scale of the width of
) _ . the enclosed slit, and one may make a local approximation to
The free energyF of interaction thgt a _dllute pol_ymer fdr_Afdr_B[b(rA)b(rB)](d“)’z&Gp—W(r_A Ta) . which is
solutl|on induces between wall and particle is propor'tlon'al tGhe GL expression corresponding  tgdr o[ drgoZp,
the integral fdr,fdrg over all space of the combination \,an written in terms of correlation functionSxy

OZ (T AT B)=Zpw— Zw— Zy+ Zpyi Of partition functions of —(¢(Ta - ; -
pw . Tpw fmw o “p - Sbu ) =(¢1(rp) ¢1(rg))pw: €tc. in the concentric geometry. On
a single chain with two ends fixed that coils around the Parfixing the angle Opr\I’Ihe vectar, so that it points to a given

t'gﬁié?eTglrn?iaigeszg‘“gé;(n)th;ng?rl]f iigﬁﬁizs‘”)éci;uns tlze surface elemerd S, of the sp_here_ vand integrating over the
b P P/ P bulk] - magnitude ofr, and overrg, one uses expressions for

ghn? Ccisr?tri(l))fugoigk;f?nc;r! dp;arg(r:éeinw":‘ﬂgé ﬁ’; :?] Sth:(r:g t?l;et Gpw etc. which are taken from the geometry of two infinite
only . : A B 9 P planar parallel walls with distance,, with a space-
is essentially given b\\,N A, whereA,, and A, are layers . d d Hicient_ai by 1= b2 oY in th
of width of the order ofR, that are centered around the wall "aePendent coefiicient given by t=b%(r,,0)t in the

X Hamiltonian. Replacingp(rg) by b(r|,0) leads to the form

and the particle surface, respectively, and the sizé&Cas A2 gl / _3
much smaller thaiR. For a better understanding of the local JdSalb(r,0)1%"24(t) ~ {1+ expfz(t) ]} = [ dry 4t~

parallel-wall approximation, which is the basis of the Deria-11+exgD(rg)t"?]} of the double integral. Here we have
gin procedure, one may use the GL representation describatsed dSy[b(r,,0)]% *=dr,; and the explicit_expression
in Sec. V and apply a conformal transformatigit] r—r,  b(r;,0)=1+rf/(2zR) , which imply z(t)"?=D(r y)t*2
which maps wall and particle onto twooncentricspheres  This form of the double integral leads to the Deriagin expres-
w and p with center atr=0. For zz<R the concentric sion for 6F.
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