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Universal density-force relations for polymers near a repulsive wall

E. Eisenriegler
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 19 September 1996!

The relation between the force exerted by long flexible polymer chains on a repulsive wall and the corre-
sponding monomer density close to the wall is shown to imply a universal amplitude ratio. This is calculated
in an « expansion, and its importance in various situations is pointed out. These include a single polymer
trapped between two parallel walls and a solution of polymers inducing a depletion interaction between the
wall and a mesoscopic particle. Dilute and semidilute solutions in the half space are also considered.
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I. INTRODUCTION

In a dilute or semidilute solution of long flexible polyme
chains in the half space bounded by a planar repulsive w
themonomer densityprofile has a depletion region of mes
scopic width@1#. For distancesz from the wall that are smal
compared to this width~but large on the microscopic scale!,
the profile increases as;z1/n, wheren is the Flory exponent
@1#. This has been predicted by Joanny, Leibler, and
Gennes@2#, who also observed that the amplitude in t
power law is proportional to the repulsiveforceper unit area
which the polymer solution exerts on the wall.

We recall their argument by discussing the case of a di
polymer solution where the width of the depletion region
of the order of the chain size in bulkRx;Nn, with N the
number of monomers per chain.~A precise definition ofRx

will be given below.! Denoting the bulk densities of poly
mers and monomers bynb andNnb, respectively, the mono
mer density profile is given byM(z/Rx)Nnb, whereM is a
scaling function that tends to unity for large argument. T
above mentioned behavior;z1/n then follows, since the
monomer density profile should be independent ofN if
z!Rx . The reason is that the monomer density close to
wall is proportional@1–3# to the force per area that the poly
mers exert on the wall, and the force per area equals
osmotic pressurenbkBT of the dilute solution which is inde
pendent ofN. For a semidilute solution@where the depletion
width is of the order of the screening lengthj;(Nnb)

2mn,
with m51/(dn21) andd the space dimension, and whe
the osmotic pressure is;(Nnb)

m11# the argument is quite
similar @1,2#. While these arguments yield the power-law e
ponent 1/n of the profile they make no definite predictio
about the amplitude in the density-force relationship.

In this paper acompletequantitative expression for th
density-force relationship is given, which is free of micr
scopic details@3# and characterized by auniversalnumber
B. It is shown that thesamenumber appears in a wide var
ety of differentsituations.

The following situations will be considered:~i! A single
chain with one end~or both ends! fixedfluctuating in the half
space bounded by a wall.~ii ! A single chaintrappedbetween
two parallel walls. The distant wall may be either repulsi
or near the threshold for adsorption@1,4#. ~iii ! A dilute and
551063-651X/97/55~3!/3116~8!/$10.00
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monodisperse solution offreechains in a half space or~iv! in
a half space containing a mesoscopic obstacle~‘‘particle’’ !
of arbitrary shape and finite extent. In~iii ! and~iv! the poly-
mer density far from the wall~and from the particle! is fixed,
and the difference between the forces with and without
particle yields the depletion interaction of the particle w
the wall. A semidilute solution in half space~iii’ ! is briefly
considered at the end.

In all cases it is assumed that lengths, such as the c
sizeRx ~or the screening length! and the distance from the
wall to a fixed end of the chain or to the closest point
another confining boundary~which we denote collectively by
D), are much larger than the ‘‘microscopic’’ lengthsa
~monomer size or the ranges of the monomer potentials@3#
due to a wall or particle!. It is for a!z!D that the monomer
density varies;z1/n and forms a universal relation with th
mean repulsive forcef exerted by the polymer~s! on the wall
in which the numberB appears.

The density-force relations are stated in Sec. II, illustra
in Secs. III and IV and derived~by means of the polymer
magnet analogy! in Sec. V. Section VI is reserved for con
cluding remarks.

II. DENSITY-FORCE RELATIONS

Consider a modified monomer density defined by

r~r ! dr5k dN~r !, ~1!

wheredN(r ) is the number of monomers@5# located inside
the volume elementdr around the pointr . The quantityk is
the nonuniversal amplitude

k5~Rx!
1/n/N ~2a!

that relates the total numberN of monomers in a single chain
to the mean square

Rx
25^Rx

2&bulk5^R2/d&bulk ~2b!

of the projectionRx of the end to end distanceR onto the
x axis when the chain fluctuates in unbounded space. H
d is the space dimension. Since only the ratiodN/N enters
r, it is less dependent on the monomer structure than
usual density dN/dr . The scaling dimension ofr is
3116 © 1997 The American Physical Society
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~length! (1/n)2d and equals the ordinary~or ‘‘naive’’ ! dimen-
sion ofr, compare@5# and Sec. V below. Similarly one ma
define layer densitiesrl(z) by

rl~z! dz5k dNl~z!, ~3!

wheredNl(z) is the number of monomers with a distan
from the wall betweenz andz1dz. Thusrl(z)5*dr i r(r )
where the integration is over thed21 components of
r5(r i ,z) parallel to the wall.

In the single-chain situations~i! and ~ii !, the universal
relation reads@6#

^rl~z!&~as!/z1/n5Bf /kBT. ~4!

Here the superscript (as) refers to the ‘‘asymptotic’’ con
tion a!z!D, andB is the universal amplitude mentioned
the Introduction. For ideal~random walk! chains@7#

B5Bid52 ~5!

independent ofd, while for chains with excluded volume
~EV! interaction

B5BEV52$12b1«%, ~6a!

with

b15~ ln 21CE22/3!/850.075 ~6b!

andd542« is close to 4. HereCE50.577 is Euler’s con-
stant.

In situation ~iii ! the density-force relation also has th
form ~4!. Dividing both sides by the areaA of the wall, one
finds that^r(r )& (iii)

(as)/z1/n equalsBnb , with nb the polymer
density in the bulk~far from the wall!. Here the pressure o
the wall f /A equals the pressure in the bulk, which
nbkBT from the ideal gas law. On denoting the bulk norm
ized @5# monomer densitŷr& (iii) /(nbRx

1/n) in the scaling re-
gion a!z,Rx byM(z/Rx), the universal relation can als
be written as

M~as!~z/Rx!/z
1/n5B/Rx

1/n . ~7!

Immersing the finite particle of situation~iv! in the polymer
solution in the half space changes the force on the wall
d f , where

E dr i $@^r~r !&~ iv!
~as!/^r~r !&~ iii !

~as!#21%5d f /~nbkBT!. ~8!

Equation~8! is expected to hold for densities^r(r )& down to
distances microscopically close to the wall (z;a). For a
particle which repels the chains, the density deviation a
thusd f are negative, i.e., the repulsive force onto the wal
reduced@8#, reflecting the attractive character of the dep
tion interaction. Note that multiplying Eq.~8! by
^r(r )& (iii)

(as)/z1/n5Bnb yields a form which closely resemble
Eq. ~4!.

It is instructive to compare~iv! with the case where the
force between wall and particle is not mediated by a polym
solution but by a critical fluid, such as a binary mixture at
critical demixing point@9,10#. In this case, the order param
-

-

y

d
s
-

r

eter profile^f(r )& (as) and the force onto the wall satisfy@11#
a relation similar to Eq~8!. However, unlike the integrand in
Eq. ~8!, the expression@^f(r )& (iv)

(as)/^f(r )& (iii)
(as #21, which

now appears on the left-hand side~lhs! is not z independent
and negative, but proportional tozd and positive~if we as-
sume that the wall and particle surfaces have the same c
acter!. Since the right-hand side~rhs! now has@11(b)# the
form 2Czdd f /kBT with C a positive universal constant, th
interaction is again attractive.

III. FIXED AND TRAPPED CHAINS

As a consequence of the simple universal relationships~4!
and ~8!, the asymptotic density and the force must have
samedependence on the variablesD mentioned above. We
now discuss the various cases, beginning with situation~i!
where an ideal chain has one end fixed at a distancezA from
the wall. Then fora!z!zA ,Rx ~as! one finds a scaled den
sity ^rl(z)&

(as)/z2 given by 2]zAln erf @zA /(A2Rx)#, which

is twice the repulsive forcef /kBT, compare, e.g.,@4#. Thus
Eqs. ~4! and ~5! are obeyed, and the density and the for
both change from a power-law@12# behavior ;zA

21 for
zA!Rx to an exponential dependence;Rx

21exp@2zA
2/

(2Rx
2)] for Rx!zA . Equations~4! and~5! can also be easily

checked for an ideal chain with two fixed ends at distan
zA and zB and with a!z!zA ,zB ,Rx . In this casef /kBT
equals 2Rx

21(zA1zB)/@exp(2zAzB)21#, with zA5zA /Rx ,
zB5zB /Rx .

Consider now situation~ii ! of a chain trapped in the sli
between two parallel planar walls with separationD. If both
walls are repulsive, one finds the scaling laws@13#

^rl~z!&5~Rx
1/n/D !X~z/Rx ,D/Rx!, ~9!

with z the distance from one of the walls, and

f /kBT5D21Y~D/Rx!, ~10!

whereX andY are universal functions. Thus the result~4!
confirms the plausible assumption@14# that for
a!z!Rx ,D, i.e., close to the repulsive wall,̂rl& and
f /kBT have the same dependence onRx andD, and one can
identify

B5 lim
x→0

x21/n X~x,y!/Y~y!. ~11!

We give explicit forms forD/Rx large and small. In the
wide-slit limit D→` with the other variables kept fixed,

^rl~z!&→~Rx
1/n/D !M~z/Rx! ~98!

and

f /kBT→D21, ~108!

since this limit corresponds to the half space problem~iii !
with a polymer densitynb51/(DA) in bulk, compare with
the discussion leading to Eq.~7!. ThusX→M, Y→1, and
Eq. ~11! reduces to Eq.~7! for D/Rx@1. In the narrow-slit
limit D/Rx!1

Y~D/Rx!;~D/Rx!
21/n, ~109!



po

e

ca
e
n-

-
an

se

ol

de

g

ai

p

e
r
ed

-
o

t

n
e
he

cu

ll

.

the

io

lies

l-
d

ul-

d

ra-

cal

n

e
n

s
ac-

lt
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i.e., f /kBT;N @15,16#, since the most importantD depen-
dence of the chain partition function comes from an ex
nential factor exp@2const(Rx /D)

1/n#.
If the wall atz5D in the parallel-wall geometry is at th

adsorption threshold@4# rather than repulsive, Eqs.~9!–~11!
again apply. Except for the half space limits (98),(108),
where the nature of the distant wall does not enter, the s
ing functionsX andY are different from before, although th
ratio ~11! remains the same. This may be explicitly co
firmed for an ideal chain in a narrow slitD!Rx , where
the resultsX→2$sin2(zp/D),sin2@zp/(2D)#% and Y→(Rx /
D)2p2@1,1/4# in the two cases @repulsive-repulsive,
repulsive-threshold# readily follow from ground-state domi
nance@1,17#. In the second case the chain favors the dist
wall ~the density maximum is atz5D), and bothrl

(as) and
f /kBT are smaller by a factor of 1/4 than in the first ca
~with the density maximum in the centerz5D/2 of the slit!.
If the distant wall is not precisely at the adsorption thresh
but close to it~e.g., on the repulsive side!, the variable de-
scribing the deviation must be included in the scaling
scription @4#. Also in this crossover scaling case, whereX
andY in Eqs. ~9! and ~10! depend on an additional scalin
variable, the expression corresponding to the rhs of Eq.~11!
leads to the same numberB given by Eqs.~5! or ~6! as
before.

Another interesting situation arises if one end of the ch
in the slit is fixed to the wall atz5D. Here Eqs.~4! and
~9!–~11! again apply. WhileB is given by Eqs.~5! or ~6! as
before the scaling functionsX andY are different from those
in the previous cases where no end was fixed. For exam
for given z andRx density and force decrease forD→`
~wide-slit limit! with exponential laws and not with th
power laws (98) and (108). However, the leading behavio
of layer density and force in the narrow-slit limit is expect
to remain unchanged on fixing one end of the chain.

IV. FREE CHAINS AND DEPLETION INTERACTION

In situation~iii ! the amplitudeB defined by Eq.~7! was
previously introduced in Ref.@4#, but its more general inter
pretation as the density-force amplitude for a wide class
situations was not mentioned. The«-expansion result in@4#
suffers from a bookkeeping error@18#, and the correct resul
is given by Eq.~6!.

In situation~iv! the two sides of the density-force relatio
@Eq. ~8!# depend, apart fromRx , on the shape of the particl
and its distance from the wall. To illustrate, we quote t
result for the force@19,20#

d f /~nbkBT!52A~Rx /R!1/nRd]zsM~zs /Rx! ~12!

for a spherical particle with radiusR muchsmaller than its
distancezs from the wall and much smaller thanRx . Here
M is the density in the half space introduced above Eq.~7!.
The lhs of Eq.~8! can in the case considered here be cal
lated @21#, and the result again equals the rhs of Eq.~12!.

As an example of alargeparticle, consider an object with
the shape of a plate@22# that is oriented parallel to the wa
and with areaÂ and linear dimension (Â)1/(d21) that is much
larger thanRx and the distanceD between wall and plate
Then one may disregard edge effects,^r(r i ,z)& (iv) between
-

l-

t

d

-

n

le,

f

-

the wall and the plate is independent ofr i , and one can make
contact with situation~ii !. The ratioU(D/Rx) of the mean
density between wall and plate*0

Ddẑ r& (iv) /D to the density
nbRx

1/n in the bulk equals@23# the ratio of the partition func-
tion of a chain between wall and plate averaged over
distancezA of its fixed end from the wall to the partition
function of a chain with fixed end in the bulk. The first rat
implies @5# a mean numbernbUD of polymer chains per unit
area between wall and plate, and the second ratio imp
Y5dln(yU)/dlny with the scaling functionY in Eq. ~10! for
the force f5 f (ii) of a trapped chain. A straightforward ca
culation @19,24,25# of the force exerted on the immerse
plate leads to the result

d f

kBTÂ
52nbS 12UD

f ~ ii !

kBT
D , ~13!

expected intuitively. For ideal chains and both walls rep
sive,

U5S j„8/~p j !2…exp@2~p j !2Rx
2/~2D2!#,

with j51,3,5, . . . . Oninserting Eq.~10! into Eq. ~13!, one
recovers the result of Asakura and Oosawa@25# for 2d f ,
which decreases monotonically fromnbkBTÂ to zero as
D/Rx increases from zero to infinity. To confirm Eq.~8!,
note that on its lhsr i is confined to the interior of the slit, an
one may replacêr& (iv)

(as) by nbUD^rl& (ii)
(as). Then Eq.~8! fol-

lows from Eq~13! on using^r& (iii)
(as)5Bnbz

1/n and the relation
~4! between̂ rl& (ii)

(as) and f (ii) .
As a final example consider a spherical particle with

diusRmuchlarger than the distancezs of its closest point to
the wall and much larger thanRx . It is then reasonable to
apply the Deriagin approximation@26,27#, which describes
the sphere by a superposition of immersed plates with lo
distanceD→D̃(r i)5zs1r i

2/(2R) from the wall. In particu-
lar d f /kBT is then given by the integral*dr i over the rhs of
Eq. ~13! with D replaced byD̃. Note that the second term i
the parentheses in Eq.~13!, which equalsUY, then ap-
proaches 1 asr i→`, and the integral converges. Sinc
^r(r i ,z)& (iv)

(as) also follows from the plate expression give
above on replacingD→D̃(r i), Eq. ~8! again applies. An
explicit formula ford f /kBT can be obtained for ideal chain
andd53. We note the corresponding free energy of inter
tion perkBT

dF

kBT
52nbRRx

2V~zs /Rx! ~14a!

between sphere and wall, from whichd f follows as
d f52(d/dzs)dF. Here

V~z!54pE dt

2p i
ett22 ln@11exp~2zA2t!#, ~14b!

where the integration path in the complext plane encircles
the cut that extends fromt52` to t50 counterclockwise.
While V is proportional toz23exp(2z2/2) for z→`, its ex-
pansion aboutz50 isV54p(ln22A2/pz1 1

4z
2), apart from

terms of orderz5. This should be compared with the resu
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@25# (dF/kBT)phs52nbRp(2R̃2zs)
2Q(2R̃2zs), with Q

the step function, for a model where each polymer ch
interacts with the wall and with the large spherical parti
like a hard sphere~phs! with an effective radiusR̃ @28#.

V. POLYMER-MAGNET ANALOGY
AND SHORT-DISTANCE EXPANSION

Now we derive the density-force relations~4!–~8!. It is
convenient to use the polymer-magnet analogy@1,4,29#,
since wall effects for critical Ginzburg-Landau~GL! ‘‘mag-
nets’’ are well understood@30,31#. The partition function of
a single polymer chain, with the ends fixed atrA and rB, is
related to the correlation function of the order parameter d
sitiesf1(rA) andf1(rB) @32# in a GL model by means of a
Laplace transformationL with respect toT2Tc . The conju-
gate Laplace variableL has the dimension of length square
and is proportional to the total numberN of monomers of the
chain. The monomer densityr(r ) is related to the quantity

C~r !5Rx
1/n~2L !21F2~r !, ~15!

which has identical naive and scaling dimensions~length!
(1/n)2d. To avoid lengthy formulas we introduce the compa
notation

wA,B5f1~rA!f1~rB! ~16!

for the product of two order parameter densities atrA and
rB .

Consider first situation~i! of a chain with two fixed ends
in which case@4,19,29#

^r~r !&5L^C~r !•wA,B&w /L^wA,B&w . ~17!

Here ^&w denotes a statistical average for a GL field in t
half space with the Dirichlet conditionF50 at the boundary
wall @31#. The dot followingC denotes a cumulant averag
The property@33#

E
1
dr L^C~r !•wA,B&w5Rx

1/nL^wA,B&w ~18!

ensures the normalization@5# of ^r(r )&. Here the integral
*1 extends over the half space bounded by the wall. To fi
the behavior̂ r& (as) of ^r& near the repulsive wall, one ca
use the short-distance expansion ofF2 near a Dirichlet wall
@4,34–36#, which implies@37,38#

C~r i ,z!→Bz1/n T''~r i,0! ~19!

in the scaling regiona!z, whereB is the universal ampli-
tude in Eqs. ~5! or ~6!. The surface operato
T''5@F'(r i)#

2/2 with F'5(]zF)z50 is the component of
the stress tensor perpendicular to the wall. In both Eqs.~4!
and~8! the integral*dr iT''(r i,0) ofT'' over the surface of
the wall appears, which implies a shift of the wall@4,35,39#.
In the present situation~i! of a chain with two fixed ends
^rl& follows from Eq.~17! on integrating overr i and it is the
shift identity @4,39#

E dr i ^T''~r i,0!•wA,B&w5~]zA1]zB!^wA,B&w ~20a!
n

n-

t

d

that can be used. Thuŝrl& obeys Eq.~4! where f /kBT is
given by the derivative (]zA1]zB)lnL^wA,B&w of the loga-
rithm of the polymer partition function. This is in accordan
with Ref. @6#. In the case of a chain with only one en
(rA) fixed ^r(r )& follows from the expression in Eq.~17! on
integrating in the numerator and denominatorrB over the
half space and the validity of Eq.~4! ~with f /kBT given @6#
by ]zAln*1drBL^wA,B&w) follows from the same line of ar-
guments@40#. Here one uses that the integration over the h
space *1drB of the quantity in Eq. ~20a! leads to
]zA*1drB^wA,B&. The]zB term in Eq.~20a! does not contrib-
ute to the integral because of the Dirichlet boundary con
tion at zB50.

Consider next the situation~iii ! of a dilute polymer solu-
tion in the half space@4#. Then ^r(r )&/nb follows from the
rhs of Eq. ~17! on replacing the denominator by the bu
quantityzbulk5L*drB^wA,B&bulk and on replacing in the nu
merator^•&w by the double integral*1drA*1drB^•&w . In
the bulk limit z→` the double integral tends to
*drA*drB^•&bulk and one verifies@5# the bulk valueRx

1/n of
^r&/nb on using translational invariance and the counterp
of Eq. ~18! in the bulk. The validity of the relation~7! fol-
lows on using translational invariance parallel to the wall
order to write the double integral as*0

`dzA*1drB*dr i^•&w
and on applying@40# Eqs.~19! and~20a!. Here one takes into
account that the integration*0

`dzA*1drB and the Laplace
transformationL of the quantity in Eq.~20a! yields zbulk .

The density-force relations in situations~ii ! and ~iv! can
be shown in essentially the same way. The reason is that
~18! and~19! apply not only for the averagê•&w in Eq. ~17!
but also for corresponding averages^•&ww or ^•&pw for a GL
field in the space between two walls~ww! or between a
mesoscopic particle and a wall~pw!. Here*1 in Eq. ~18! has
to be replaced by the corresponding space integral@33#. For
example, consider situation~ii !. In this casê r(r )& follows
from the rhs of Eq.~17! on replacing the two averages^&w by
averageŝ &ww and on integrating in the numerator and d
nominatorzA andzB perpendicular to andrAi parallel to the
walls. Now it is the shift identity@41#

E dr i ^T''~r i,0!•wA,B&ww5~]zA1]zB1]D!^wA,B&ww
~20b!

that can be used. Note that the insertion of the integra
stress tensor increases not only the distanceszA ,zB between
the wall atz50 and the pointsrA ,rB , but also the distance
D between the two walls. Integration *0

DdzA*0
DdzB

of the quantity in Eq. ~20b! leads to
(d/dD)*0

DdzA*0
DdzB^wA,B&ww , where the Dirichlet condi-

tion at z50 has been taken into account. Combining th
with Eq. ~19! @40# and with the form of^r(r )& described
above, one obtains Eq.~4! for situation~ii !, where f /kBT is
given @6# by (d/dD)lnL*0

DdzA*0
DdzB*drAi^wA,B&ww . Equa-

tion ~8! can be derived along similar lines@42#.
The universal amplitudeB is also expected to appear i

situations with overlapping chains. For example, consi
situation~iii’ !, where the half space bounded by the repuls
wall contains asemidilutepolymer solution@1,2,43#. In the
‘‘equilibrium ensemble description’’ of des Cloizeaux@29#,
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3120 55E. EISENRIEGLER
^r(r )& is given @44# by ^C(r )&w
(2) where ^&w

(2) is a half
space average with the GL temperature adjustedbelow Tc so
that the GL bulk free energy density, apart from the si
equals the bulk pressure of the polymer solution. Here we
interested in the behavior of^r(r )& (as) for a!z!j, with j
the screening length@1#, which corresponds to the correlatio
length forF2 fluctuations in the GL model. Since the sho
distance expansion ~19! again applies, and sinc
^T''(r i,0)&w

(2) equals the GL bulk free energy density ap
from its sign @45#, one finds that̂ r(r )& (iii 8)

(as) /z1/n equalsB
times the bulk pressure perkBT of the semidilute solution.
This relation is the same as in the dilute case~iii !.

On dropping the restrictiona!z and allowing for micro-
scopically smallz, one expects a relation of the type~19!,
with Bz1/n replaced by az-dependent quantity of less unive
sal character. While this quantity still has the ‘‘local’’ prop
erty of being independent of the lengthsD @37# and of the
particular situation~i!–~iv!, it does depend upon details o
the wall-monomer and monomer-monomer interaction. E
for the Dirichlet boundary conditions of the ‘‘repulsive wa
fixed point’’ @4,31# this quantity depends upon the actu
strength of the excluded-volume interaction@4,34,36#. It is
instructive to verify the local property in the case of a rep
sive wall w8 characterized by an extrapolation lengthc21 for
F which is not zero but of the order of a microscopic leng
In situation~i! with two ends fixed the corresponding corr
lation function has ac21-correction of the form

^C~r !•wA,B&w85@11c21~]z1]zA1]zB!#^C~r !•wA,B&w ,
~21!

compare with the 1/c expansion in Ref.@39#. On the rhs of
Eq. ~21! an average for a Dirichlet wallw appears, for which
one can apply the short-distance expansion mentioned ab
The two contributions from]zA and]zB on the rhs of Eq.~21!
can be neglected since they lead to corrections that
smaller than the leading contribution by (czA)

21 and
(czB)

21. However,cz can now be of order 1. The nonun
versal but local quantity replacingBz1/n, in this case is
(LR)21Rx

1/n @11c21]z#Ew
'
2 ;w2

(`)
in the notation@38# of Ref.

@4#, whereEw
'
2 ;w2

(`)
depends onz and the strength of the ex

cluded volume interaction. In this context it is also useful
discuss the monomer density right atz50 for a representa
tive w9 of the repulsive wall, corresponding to a potential f
the monomers which vanishes forz.0 and has a large bu
finite value forz,0. Generalizing the simple wall-shift ar
gument of Ref.@46# to GL averages which arise in situatio
~i!, one obtains t1*dr i ^F2(r i ,0)•wA,B&w9
5(]zA1]zB)^wA,B&w9 , where t1 characterizes the potentia
height @47#. Comparison with Eqs.~15!–~20! shows that, in
this case, Eq.~4! applies, with Bz1/n replaced by the
L-independent nonuniversal and local quant
Rx

1/n/(2Lt1). Thus one obtains universal relations f
z!D, even without requiringa!z, by considering ratios
such as the lhs of Eq.~8! or by taking ratios of the lhs of Eq
~4! for differentD values, since the nonuniversal local qua
tity then drops out. Of course, neither thez1/n dependence
nor the universal amplitudeB can be observed in this case
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VI. CONCLUDING REMARKS

The main results of this note are the density-force re
tions ~4! and ~8! and the values~5! and ~6! of the universal
amplitudeB. In addition to the derivation from the field
theory~in Sec. V!, the relations have been verified explicit
in several cases~in Secs. III and IV!. In the case of self-
avoiding chains, values ofB beyond the« expansion, i.e., for
d53 and 2, would be desirable.

In order to observe the density-force relations in simu
tions or real experiments, one should distinguish betw
two aspects of the relations:~a! In a given situation two
differentobservables, i.e., the force and the monomer den
at a ‘‘small’’ distancez from the wall, have thesamedepen-
dences on mesoscopic lengths~denoted byD in the Introduc-
tion!, such as the Flory radiusRx , the distance of the two
walls in between which a chain is trapped, the distance fr
the wall of an immersed particle, etc. To observe this, o
may even drop the requirementa!z ~but maintain the single
inequalityz!D), provided one replacesBz1/n in Eq. ~4! by a
nonuniversal proportionality factor which depends onz but
not onD @48#, compare the discussion at the end of Sec.
This factor drops out on taking ratios for different values
D, and it does not appear in the ratio on the lhs of Eq.~8!. ~b!
If the double inequalitya!z!D is obeyed, the proportion
ality factor in Eq.~4! has the formBz1/n, with the universal
amplitudeB. In a first attempt it would be easier to te
aspect~a! implementing only the single inequalityz!D.

The Deriagin-type approximation for the ideal chain m
diated depletion interaction between a large spherical par
and the wall as given in Eqs.~14! is presumably exact, as i
argued in the Appendix.

The amplitudesB in Eqs. ~5! and ~6! are expected to
appear also in density-force relations for the monomer d
sity close to acurvedrepulsive wall. For example, consider
single polymer chain that is fixed with one end at a po
rA and exerts a repulsive forcef on a spherical particle o
radiusR and with center at the origin (R,r A). If the chain is
ideal one may use the known form of the order parame
correlation function in a Gaussian-Ginzburg-Landau mo
for the outer space of a sphere with Dirichlet boundary c
ditions ~see, e.g., Ref.@19#! to explicitly show the relation
@49#

E dS @^r~r !&~as!/~r2R!1/n#cosq5Bf /kBT, ~22!

with 1/n52 and with thesameamplitudeB52 as for a
planar wall @see Eq. ~5!#. Here ~as! denotes
a!r2R!r A ,R,Rx . The quantity in square brackets is the
independent ofr2R but depends on the angleq in between
r andrA and is integrated over the surface of the sphere w
the projection cosq of the inward pointing surface norma
onto the direction of the force.f /kBT is the derivative of the
logarithm of the polymer partition function with respect
r A . Note that Eq.~22! applies for arbitrary ratios of the thre
mesoscopic lengthsr A ,R,Rx and reduces to Eq.~4! in the
planar wall limitR→` with Rx and r A2R fixed. For illus-
tration we quote @50,19# the explicit form
f /kBT5] r Aln$12(R/rA)erfc@(r A2R)/(A2Rx)#% for d53 of
the second factor on the rhs of~22!. The density-force rela-
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tion ~22! also applies for a chain with excluded volume i
teraction@51# if one uses forB andn, respectively, the cor-
responding planar-wall amplitude@see Eq. ~6!# and the
corresponding Flory exponent.

ACKNOWLEDGMENT

It is a pleasure to thank T.W. Burkhardt for discussio
and for a critical reading of the manuscript.

APPENDIX: DERIAGIN APPROXIMATION
AND CONFORMAL TRANSFORMATION

The free energydF of interaction that a dilute polyme
solution induces between wall and particle is proportiona
the integral*drA*drB over all space of the combinatio
dZpw(rA ,rB)5Zpw2Zw2Zp1Zbulk of partition functions of
a single chain with two ends fixed that coils around the p
ticle in half space (Zpw), in the half space (Zw), around the
particle in infinite space (Zp), and in infinite space (Zbulk). In
the case of a spherical particle withzs , Rx!R, there are
only contributions ifrA andrB are in a regionK in space that
is essentially given byLwùLp whereLw andLp are layers
of width of the order ofRx that are centered around the wa
and the particle surface, respectively, and the size ofK is
much smaller thanR. For a better understanding of the loc
parallel-wall approximation, which is the basis of the Der
gin procedure, one may use the GL representation descr
in Sec. V and apply a conformal transformation@11# r→ r̄ ,
which maps wall and particle onto twoconcentricspheres
w̄ and p̄, with center at r̄50. For zs!R the concentric
Sc
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spheres have nearly equal size with a relative differe
(2zs /R)

1/2 of the radii. To be definite we choose the absolu
difference of the radii equal to the distancezs of the particle
from the planar wall. For ideal chains the corresponding
Hamiltonian for the concentric system has a positio
dependent@52# coefficient t̄5b2t in front of theF2 term.
Here t;T2Tc is the position-independent coefficient in th
original Hamiltonian, andb5b(r )5u]r /] r̄ u1/d is the local
scale factor of the transformation~which diverges at that
point of w̄ corresponding tor5`). However, in the region
K̄ of the concentric geometry corresponding toK, the quan-
tities b and t̄ are slowly varying on the scale of the width o
the enclosed slit, and one may make a local approximatio
*dr̄A*dr̄B@b(rA)b(rB)#

(d12)/2dGp̄ w̄( r̄A , r̄B) , which is
the GL expression corresponding to*drA*drBdZpw
when written in terms of correlation functionsGp̄ w̄
5^f1( r̄A)f1( r̄B)& p̄ w̄, etc. in the concentric geometry. O
fixing the angle of the vectorr̄A so that it points to a given
surface elementdS̄A of the sphere w̄and integrating over the
magnitude of r̄A and over r̄B , one uses expressions fo
Gp̄ w̄, etc. which are taken from the geometry of two infini
planar parallel walls with distancezs , with a space-
independent coefficientt̄ given by t̄5b2(rAi,0)t in the
Hamiltonian. Replacingb(rB) by b(rAi,0) leads to the form
*dS̄A@b(rAi,0)#

d124(t̄)23/2/$11exp@zs(t̄)
1/2#%5*drAi 4t

23/2/
$11exp@D̃(rAi)t

1/2#% of the double integral. Here we hav
used dS̄A@b(rAi,0)#

d215drAi and the explicit expression
b(r i ,0)511r i

2/(2zsR) , which imply zs( t̄)
1/25D̃(r Ai)t

1/2.
This form of the double integral leads to the Deriagin expr
sion for dF.
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1@(k1ĉ)/(k2ĉ)#exp@2(zB2D)k# if the wall atz5D is charac-

terized by an extrapolation length 1/ĉ. Here k5(p21t)1/2,
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